1.

2.

Algebra 2 Honors Homework – Exponential Functions

Which of the following equations represent exponential growth? 1.

I.	$y = \frac{1}{3} \left(\frac{5}{10}\right)^{-x}$
II.	$y = \frac{1}{2} \left(\frac{8}{3}\right)^{2x}$
III.	$y = 2(3)^{-2x}$
IV.	$y = 4 \left(\frac{9}{4}\right)^x$

Describe the end behavior of the function $f(x) = (2)^{x-3} + 4$. 2.

a. as
$$x \to -\infty$$
, $f(x) \to +\infty$ and as $x \to +\infty$, $f(x) \to 4$

- as $x \to -\infty$, $f(x) \to 4$ and as $x \to +\infty$, $f(x) \to +\infty$ b.
- as $x \to -\infty$, $f(x) \to -\infty$ and as $x \to +\infty$, $f(x) \to +\infty$ c.
- as $x \to -\infty$, $f(x) \to 3$ and as $x \to +\infty$, $f(x) \to +\infty$ d.

Describe the end behavior of the function $f(x) = \log_2(x-4) + 3$. 3._____ 3.

as $x \to 4$, $f(x) \to -\infty$ and as $x \to +\infty$, $f(x) \to +\infty$ a.

as $x \to 4$, $f(x) \to +\infty$ and as $x \to +\infty$, $f(x) \to +\infty$ b.

as $x \to -\infty$, $f(x) \to -\infty$ and as $x \to +\infty$, $f(x) \to +\infty$ c.

d. as
$$x \to 3$$
, $f(x) \to -\infty$ and as $x \to +\infty$, $f(x) \to +\infty$

- When evaluating the function $f(x) = 3 \cdot 5^{x+2} 7$ for any real 4. number x, what must be true about the value of f(x)?
 - The value of f(x) is always greater than -2 a.
 - The value of f(x) is always greater than -7 b.
 - The value of f(x) is always positive c.
 - The value of f(x) is always negative d.

For questions 5 - 6, graph the following functions without using a graphing calculator.

H.A.:

End Behavior:

Starting Pt:

6. V.A.:

End Behavior:

Starting Pt.:

For questions 7 - 8, find the inverse of the following exponential equations.

7. $y = 4^x - 1$

6. $y = \log_3(x+1) - 2$

8.
$$y = 4^{x-1}$$

9. The graph of which function is stretched vertically by a factor of four and translated two units left from the graph of the parent function.

- $y = 4\log_3(x+2)$ a.
- b. $y = 4^{x+2}$ c. $y = \log_3(4x+2)$
- $y = 4(3)^{x-2}$ d.
- 10. The graph of which function is stretched vertically by a factor of three and translated five units right and two units down from the graph of the parent function.
 - $y = 3\log_4(x+5) 2$ a. b. $y = 3(4)^{x-5} - 2$ c. $y = \log_4(3x-5) - 2$

d.
$$y = 3^{x-5} - 2$$

8._____

7._____

9.____

10.